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Abstract
We focus on the problem of how the wealth is distributed among the units
of a networked economic system. We first review the empirical results
documenting that in many economies the wealth distribution is described by a
combination of the log-normal and power-law behaviours. We then focus on the
Bouchaud–Mézard model of wealth exchange, describing an economy of
interacting agents connected through an exchange network. We report
analytical and numerical results showing that the system self-organizes towards
a stationary state whose associated wealth distribution depends crucially on the
underlying interaction network. In particular, we show that if the network
displays a homogeneous density of links, the wealth distribution displays
either the log-normal or the power-law form. This means that the first-order
topological properties alone (such as the scale-free property) are not enough to
explain the emergence of the empirically observed mixed form of the wealth
distribution. In order to reproduce this nontrivial pattern, the network has to be
heterogeneously divided into regions with a variable density of links. We show
new results detailing how this effect is related to the higher-order correlation
properties of the underlying network. In particular, we analyse assortativity by
degree and the pairwise wealth correlations, and discuss the effects that these
properties have on each other.

PACS numbers: 89.75.Hc, 89.65.Gh, 89.75.Fb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Real economies are an example of human complexity at the largest scale, where the local
interactions of individuals result in globally organized properties of the socioeconomic system
as a whole. One of the most important collective properties of an economy is the distribution
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of the wealth owned by its fundamental units [1]. While the understanding of this process
has traditionally invoked dynamical mechanisms treating each economic agent as a separate
entity, more recently the role of the interactions has been considered as a key element in the
self-organization of the system [2, 3]. Making use of the results on complex networks [4, 5],
it is now possible to consider interaction networks explicitly and understand the effects that
their topological properties have on wealth dynamics.

In this work, we first review some stylized facts characterizing empirical wealth
distributions [1–3, 6–12]. Then we focus on the role of topology in determining how the
wealth redistributes among the units of a networked economic system. By means of a
stochastic multi-agent model [13], we confirm previous results [14–16] showing that either
the log-normal or the power-law distributions arise when the network is homogeneous (with
uniform density of connections). As a consequence, we find that in order to obtain the
most general observed pattern characterized by a combination of both distributions, different
regions of the network have to be heterogeneously connected. We finally relate these results
to higher-order correlation properties such as assortative mixing by wealth and degree.

2. Economic distributions: empirical results

Many empirical studies [1–3, 6–12] report universal properties of wealth and income
distributions, even if quantitative differences exist across various economies. One common
feature, first pointed out by the early work of the Italian economist and social scientist Vilfredo
Pareto [6], is that the large wealth range is empirically found to be power-law distributed, i.e.
the statistical distribution of the wealth w has the form p(w) ∼ w−µ for w → ∞, µ > 0.
The exponent of the power-law is usually written in the form µ = 1 + α, where α has to be
positive for p(w) to be integrable in the large wealth limit. In real economies, α (also called
the Pareto index) is found to be time-dependent within the range 1 � α(t) � 2.5 [6, 7, 10].
To avoid divergence at zero wealth, the distribution must hold only above a threshold value
w∗ > 0. The correctly normalized Pareto’s law is then

p(w) = αwα
∗

w1+α
, w � w∗ (1)

and p(w) = 0 for w < w∗. Note that the cumulative distribution P>(w) ≡ ∫ ∞
w

p(w′) dw′

behaves as a power law with exponent −α.
Power laws lack a characteristic scale, and are related to fractal structures with self-similar

properties [7]. Here, the power-law character of the distribution means that the largest part of
the total wealth of the society is owned by a small fraction of the individuals, whereas most
people only own a small fraction of it. For this reason, one also speaks of wealth condensation
[13] to indicate that a large amount of wealth is condensed in the hands of a small number of
rich individuals.

Actually, in many cases Pareto’s law only describes the tail of a more complicated
distribution. Indeed, as first noticed by Robert Gibrat [17], the small and middle ranges appear
to be well described by a log-normal distribution. A random variable is said to be log-normally
distributed if its logarithm is normally distributed. It follows that the log-normal distribution,
also denoted Gibrat’s law, has the form

p(w) = β

w
√

π
exp[−β2 log2(w/w0)], (2)

where β ≡ 1/
√

2s2 (Gibrat index), s2 is the variance and w0 is the mean of log(w). Differently
from the power-law case, the log-normal distribution has a characteristic scale (even if, due
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to the logarithmic transformation, the distribution is much broader than a Gaussian with same
mean and variance). On the double-logarithmic axes, while Pareto’s law looks like a straight
line, Gibrat’s law has a parabolic shape. Empirical studies show that β varies in time and
that 2 � β(t) � 3 [10]. Therefore, in the most general case, the value w∗ in (1) has to be
regarded as a crossover value marking the transition from the log-normal (w < w∗) to the
power-law (w > w∗) regime. Importantly, this transition is non-smooth at the crossover value:
the cumulative distributions have different slopes for w < w∗ and w > w∗ [10]. As we shall
discuss, this makes more difficult the possibility to reproduce empirical data by means of a
simple model.

The above stylized facts of empirical distributions are well documented at the level of
individuals [2, 3, 10]. Similar results hold also for the size distribution of firms [1, 18]. It
is also possible to analyse the economic system at the largest scale, with world countries as
fundamental units and their gross domestic product (GDP) as their natural income [19–21].
Again, one observes that the GDP distribution is characterized by a power-law-like right tail
and by a different, log-normal-like left part. In summary, the above results suggest that many
economic systems at different levels of aggregation are characterized by similar distributions
of their associated wealth. The form of these distributions often ranges from a log-normal
to a power-law behaviour, the most general case appearing a combination of both. Whether
this actually allows one to speak of universal distributions is of course an important but
controversial point. Other fitting functions other than the purely log-normal and power-law
forms have been proposed [1–3], and all of them offer advantages and drawbacks. The survey
of all possible statistical distributions is however beyond the scope of this work. In what
follows, we shall mainly be interested in the microscopic origin of the observed patterns. This
means that we shall review, and further explore, existing models focusing on the mechanisms of
wealth dynamics that may be responsible for the heterogeneous shape of wealth distributions.
To this end, the power-law and log-normal densities remain useful benchmarks capturing the
essential difference between the scale-free and single-scale wealth distributions.

3. Theoretical approaches: independent versus interactive models

Several microscopic models of wealth dynamics have been proposed. The simplest one,
first proposed by Gibrat [17] under the name of rule of proportionate growth, is based on
the assumption that the wealth wi of each individual i evolves in time following a purely
multiplicative stochastic process, that is

ẇi(t) = ηi(t)wi(t), (3)

where ηi(t)’s are the independent random variables drawn from the same distribution, with
assumed finite mean and variance. To be meaningful, the above stochastic differential
equation has to be interpreted in a specified sense, following either Ito’s or Stratonovich’s
convention [22] (in the following sections, we shall always interpret equations of this type in
the Stratonovich sense). Whatever the choice, it is clear that in the discretized form of (3)
log wi(t + 1) can be expressed as the sum log ηi(t) + log ηi(t − 1) + · · · of logarithms of the
stochastic variable η. Then, as follows from the central limit theorem, the logarithm of the
wealth approaches a normal distribution. This directly implies that the wealth wi is log-
normally distributed according to (2). Therefore, the purely multiplicative stochastic model
explains the appearance of Gibrat’s law, but cannot reproduce the power-law tails of empirical
wealth distributions.
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A possible approach is to modify the stochastic equation (3) in order to obtain different
long-term forms of the wealth distribution. For example, the multiplicative process plus an
additive noise term

ẇi(t) = ηi(t)wi(t) + ξi(t) (4)

can be shown to display (as long as 〈log ηi(t)〉 < 0) an equilibrium solution for p(w) having a
power-law tail [23]. The Pareto index α is given by the condition 〈ηi(t)

α〉 = 1, independently
of the distribution of the additive term ξi(t). With the same condition on 〈ηi(t)〉, a power-law
distribution is also observed in the purely multiplicative model (3) by imposing that w cannot
go below a cut-off value wmin > 0 [23]. While these models can reproduce the Pareto region (1)
of the empirical distribution, they do not reproduce Gibrat’s law (2) for the lower wealth range.

One could then proceed in choosing other forms of the stochastic equation governing the
individual wealth evolution, however there is a different approach focusing on the interactions
taking place in the economy. Processes such as (3) and (4) rely on the assumption that the
evolution of the wealth wi of an individual i is uncoupled to the wealth wj of any other
individual j , which is clearly an unrealistic hypothesis. In contrast, allowing the wealth to
flow from an individual to another through transactions yields interactive, agent-based models.
Several such models have been proposed, most of them invoking either energy-like exchange
mechanisms [2, 3] or multi-agent stochastic differential equations [2, 13, 24]. The latter
are our main interest here, since as we shall see they allow the introduction of an explicit
interaction network defined among the agents. In particular, we focus on the model proposed
by Bouchaud and Mézard [13], where the wealth of N agents is governed by the following
equation:

ẇi(t) = ηi(t)wi(t) +
∑
j 
=i

Jijwj (t) −
∑
j 
=i

Jjiwi(t), (5)

where wi(t) is the wealth of agent i at time t, ηi(t)’s are independent Gaussian variables
of mean m and variance 2σ 2 (accounting for random speculative trading such as market
investments) and Jij is the element of an interaction matrix describing the fraction of agent j ’s
wealth flowing into agent i’s wealth (due to transactions between i and j ). Note the important
property of invariance under wealth rescaling w → λw, which is required since money units
are arbitrary [13]. If each agent exchanges wealth with each other, then Jij > 0 for each i 
= j .
By further assuming that the exchanged fraction of wealth is the same for each pair of agents,
we can set Jij = J/N where J is a constant determining the strength of the interaction. With
this choice, equation (5) reads

ẇi(t) = [ηi(t) − J ]wi(t) + J 〈w(t)〉, (6)

where 〈w〉 = ∑
i wi/N . It is possible to obtain analytically [13] the form of the wealth

distribution p(w̃) (expressed in terms of the normalized wealth w̃i ≡ wi/〈w〉):

p(w̃) = (α − 1)α

�[α]

exp[(1 − α)/w̃]

w̃1+α
, (7)

with α ≡ 1 + J/σ 2. The exponential cut-off for low values of w is essentially a smoothed
form for the threshold w∗ appearing in equation (1). Therefore, this model succeeds in
reproducing Pareto’s law, but the small and middle wealth ranges governed by the log-normal
distribution (2) are again not reproduced, at least with the above choice of the matrix elements
Jij . However, as we clarify below, different forms of the interaction matrix can result in very
different behaviours of the wealth distribution.
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4. Transaction networks

In what follows, we explore the dependence of p(w) on the interactions among agents in
the Bouchaud–Mézard (hereafter BM) model. In particular, we consider a network where
agents are represented by vertices and links correspond to transactions. The topology is fully
specified by the adjacency matrix aij , whose elements are aij = 1 if there is a link from i to
j and aij = 0 otherwise. We shall only consider undirected networks for which aij = aji .
Hence, the basic topological property characterizing each vertex is its number of connections
or degree, expressed as ki = ∑

j aij . The statistical distribution of the degrees of all vertices
is denoted by P(k). If the interaction takes place only between directly connected agents, in
the general case one can set Jij = (J/N)aji .

In the purely multiplicative model (3) agents are treated as independent, and this can
be viewed as the extreme case of the BM model (5) when Jij = 0 for each pair of agents
i, j . This corresponds to a trivial network with N vertices and no edge, and yields the log-
normal distribution (2). At the opposite extreme, the BM model with Jij = J/N for each
i, j corresponds to a fully connected network and yields distribution (7) displaying power-law
tails. This is the mean-field case where each agent is subject to the same average influence
of all other agents. It is then clear that different topologies result in different distributions.
While the two extreme cases discussed so far are clearly unrealistic, it is interesting to explore
intermediate, nontrivial topologies that can account for the observed mixed form of p(w).
This possibility has been explored in [13–16]. Indeed, it has been shown that a rich variety of
outcomes can derive from the simple model (5). We briefly review these results below.

5. Random, small-world and scale-free networks

The simplest network model is the random graph proposed by Erdös and Rényi [25], where
each pair of vertices is connected by a link with probability p. The resulting degree distribution
P(k) has a Poissonian form [4, 25]. Despite its simplicity, the random graph is particularly
instructive when the BM model is defined on it. Since the extreme cases of independent
and fully connected agents are recovered when p = 0 and p = 1, respectively, one could
suspect that for intermediate values of p there is a region displaying a combination of the
log-normal and power-law form of the wealth distribution, similar to the empirically observed
one. However, one can show that [13], for large values of p, the behaviour is similar to that of
fully connected networks, with a smaller value of the Pareto index α. For small values of p,
Gibrat’s law still holds as in the case p = 0. In any case, no mixed form of p(w) is observed.

Another simple network model is the small-world model proposed by Watts and Strogatz
[26]. One starts with a regular d-dimensional lattice (for example, a ring) where each vertex is
connected to its first q neighbours and, with probability p, rewires one end of each (undirected)
link to a new randomly chosen vertex. The total number of links (and thus the mean degree 〈k〉)
is then unchanged. Clearly, for p = 0 one has a regular structure (with all vertices having the
same degree), while for p = 1 each link is randomly rewired, and the resulting network is not
different from the random case (the degree distribution becomes very similar to a Poissonian
one [4]). The BM model on regular rings and small-world networks with d = 1 has been
studied in [14, 16] (however sometimes the different definition Jij = Jaji/ki is used). It is
found that when p = 0 (regular ring), the form of p(w) depends on the vertex degree k = 2q:
for small k log-normal distributions are observed, while for large k Pareto tails appear. This
again suggests that, as in random networks (which here correspond to p = 1), increasing the
number of links promotes the transition from the log-normal to the power-law distribution in
regular networks too (p = 0). The most interesting result is that, in the nontrivial case of
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intermediate values of p and 〈k〉, there exists a region where the wealth distribution can be
fitted by a combination of the log-normal (for small w) and power-law (large w) forms [14].
This is encouraging, since these results get closer to the behaviour of real data. However the
simulated distribution changes its shape smoothly, and this is not the most general pattern
observed, as discussed before.

A model which is specifically intended to generate networks with power-law degree
distributions is the scale-free model proposed by Barabási and Albert [27]. This is an evolving
model starting with m0 vertices and no link. At each time step, a new vertex is introduced and
linked to m pre-existing vertices chosen with probability proportional to their degree. High-
degree vertices attract more and more links, and after enough time the degree distribution
approaches a power law with exponent γ = −3. The BM model built on scale-free networks
generated by this preferential attachment mechanism has been studied in [15, 16]. Once
again, it is found that the wealth distribution is either log-normal or power-law, for small and
large values of the mean degree 〈k〉 = 2m, respectively, with no mixed form occurring in the
intermediate region.

6. The role of heterogeneity

In all the above models, a transition from the log-normal to the power-law form of p(w)

occurs as the number of links increases. Only in nontrivial small-world networks there is an
intermediate region displaying a mixed (however smooth) behaviour where both distributions
are observed simultaneously. In the other cases, the form of p(w) changes quite abruptly from
one form to the other as the value of the control parameter is changed. A correct interpretation
of these results is important. Since in the above models, the power-law character appears
to be related to a larger average degree, and the log-normal behaviour to a smaller average
degree, one could suspect that the simultaneous presence of low- and high-degree vertices
would determine the desired mixed form of the wealth distribution. However, this hypothesis
is contradicted by the observation that in the scale-free model vertices with large and small
degree always coexist, but this never results in a mixed distribution. This means that the
first-order properties alone, such as the degree distribution P(k), are not enough to trigger
the onset of the interesting pattern. As we show below, higher-order properties are required
to enrich the structure of the wealth distribution. Interestingly, this is not a general feature
of models based on stochastic differential equation: in the presence of additive rather than
multiplicative noise, the degree distribution has a major effect on the form of the resulting
wealth distribution [24].

We now present an example showing how the mixed form of p(w) can be obtained in a
trivial but instructive way [16]. Consider an undirected network with N vertices, M of which
are arranged in a fully connected graph and the remaining N −M ones are completely isolated
as in the example shown in figure 1 (clearly, ki = M − 1 for i = 1, . . . ,M and ki = 0 for
i = M + 1, . . . , N ). The evolution equation (5) then reduces to the mean-field case (6) for the
M connected vertices, yielding the power-law distribution p1(w), and to the independent agent
case (6) for the N − M isolated vertices, yielding the log-normal distribution p2(w). As a
consequence, the global distribution p(w) is such that the total number Np(w) of agents with
wealth w equals the number Mp1(w) of the connected ones with wealth w plus the number
(N − M)p2(w) of the isolated ones with wealth w. In other words

p(w) = M

N
p1(w) +

(
1 − M

N

)
p2(w), (8)

6
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Pajek

Figure 1. Example of a mixed network with a fully connected core of M = 10 vertices and N −M

completely isolated ones (figure produced using the Pajek software).

0.001 0.1 10 1000
w

0.001

0.01

0.1

1

P >
(w

)

Figure 2. Cumulative wealth distribution P>(w) for the BM model on a mixed network for
different values of M/N : from top to bottom, M/N = 1/2, 1/4, 1/8, 1/16. In all cases
N = 5000, J = σ 2 = 0.05 and m = 1. The wealth is rescaled to its average.

and the only control parameter is M/N [16]. In figure 2, we show p(w) obtained by means
of numerical simulations for various choices of M/N . The observed form is clearly the sum
of the contributions coming from the two sets of vertices.

The above extreme example suggests that the mixed character of the empirically observed
wealth distribution might be the effect of the simultaneous presence in the network of regions
with different link density, either well or poorly connected. In order to further explore this
possibility, one needs to check different topologies having the same key ingredient. Indeed,
the mixed behaviour captured by equation (8) is still found if the N −M vertices are arranged
in a periodic chain, as follows directly from the results we reported on the log-normality of
p(w) for the regular ring. As an additional testbed, endowed with a richer structure that allows
further analyses, we consider an octopus network (see figure 3) where M vertices are connected
in a random network forming a denser core and each of the remaining N − M vertices has
only one connection (looking like a tentacle) to a randomly chosen vertex in the core. In this
case too, the mixed behaviour is observed [16], as shown in figure 4. Indeed, the simulated
distributions look much like the real distributions [2]. The results for the octopus topology
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Pajek

Figure 3. Example of an octopus network with a core of M = 10 randomly connected vertices
and N − M = 90 tentacles with single connections to the core (figure produced using the Pajek
software).

0.001 0.1 10 1000
w

0.001

0.01

0.1

1

P >
(w

)

Figure 4. Cumulative wealth distribution P>(w) for the BM model on an octopus network for
different values of M/N : from top to bottom, M/N = 1, 1/2, 1/4, 1/8, 1/16. In all cases
N = 3000, J = σ 2 = 0.05 and m = 1. The wealth is rescaled to its average.

also inform us that for the mixed behaviour to appear we do not need the network to display
disconnected regions as in the preceding example of figure 1. The fundamental ingredient
appears to be the coexistence of regions with high (the core) and low (the periphery) link
density. We then interpret that in the one-dimensional small-world networks the mixed shape
is obtained because, for not too large 〈k〉 and for suitable values of the rewiring probability p,
in the network a set of randomly connected vertices and a part of the original ring coexist. We
then expect the latter to give a log-normal contribution to p(w), and the former to introduce
the power-law tail.

7. Assortativity and correlations

Since the degree distribution alone does not allow us to fully characterize the stationary
state that the BM model gives rise to, here we inspect higher-order topological properties.
In particular, we study the assortativity [28, 29] of the network, which is a measure of the
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Figure 5. Correlation coefficients for the BM model on an octopus network for different values of
M/N . In all cases N = 3000, J = σ 2 = 0.05 and m = 1.

pairwise correlations between the degrees of neighbouring vertices. A means to quantify this
property is given by the coefficient of assortativity by degree [28, 29] defined as

rdegree ≡ 1

σ 2
q

∑
jk

jk(ejk − qjqk), (9)

where ejk is the fraction of links between vertices with degrees j and k, qk = ∑
j ejk is the

probability that a randomly chosen link leads to a vertex with degree k and σ 2
q is the variance

of this distribution. Being a Pearson correlation coefficient, rdegree ranges between −1 and 1.
Positive values indicate a tendency for vertices with large degree to connect more frequently
with each other (assortativity), while negative values indicate a tendency for large-degree
vertices to connect with low-degree ones (disassortativity). The uncorrelated case corresponds
to rdegree = 0. The Erdös–Rényi random graph and the Barabási–Albert model defined above
are two examples of uncorrelated networks [28]. In contrast, the octopus network is clearly
disassortative, since the peripheral unit-degree vertices are connected with the large-degree
vertices in the core. The values of rdegree for the octopus network are displayed in figure 5 for
various choices of the parameter M/N . The disassortative character increases as the fraction
of peripheral vertices increases, since the difference between the peripheral degrees and the
core degrees increases. This result identifies the pairwise topological correlations as a first
sufficient ingredient for the non-smooth behaviour of p(w) to appear.

It is also important to investigate how the topology relates to higher-order properties of
the resulting wealth distribution. That is, one could add to the overall knowledge given by
p(w) the information regarding the correlation between the wealth of neighbouring vertices.
As a straightforward measure of this property, we define the assortativity by wealth

rwealth ≡ 1

σ 2
p

∫
wv(ewv − pwpv) dw dv (10)

where, in analogy with equation (9), ewv is the fraction of links between vertices with (rescaled)
wealth in the range [w,w + dw] and vertices with wealth in the range [v, v + dv]. Here,
pw = ∫

ewv dv and σ 2
p is the variance of the distribution pw. The value of rwealth computed

on the long-term state of the BM model on the octopus network is shown in figure 5. We
find that rwealth follows a trend opposite to that of rdegree: as M/N decreases, the wealth of
neighbouring vertices is more and more positively correlated.

Finally, we also investigate the degree–wealth correlation rdegree–wealth that we simply
define as the Pearson correlation coefficient between the degree and wealth of each vertex.

9
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As shown in figure 5, we find that when rdegree and rwealth are significantly different from
zero (small M/N), rdegree–wealth is very low. This means that the degree of a vertex does
not correlate with its wealth. This is in accordance with the fact that in this region one
has rdegree < 0 and rwealth > 0 simultaneously, which is not possible if degree and wealth
are positively correlated. In contrast, for large values of M/N, rdegree–wealth becomes large,
signalling a strong correlation between wealth and degree (except for M/N = 1, where all
vertices have nearly the same degree while their wealth is broadly distributed, resulting in a
vanishing rdegree–wealth). Interestingly, when this occurs, rdegree and rwealth are negligible.

Therefore, we find that, as M/N increases, the system changes from a state where
degree and wealth do not correlate, but where there is strong disassortativity by degree and
assortativity by wealth, to a different one where degree and wealth are positively correlated,
but the assortativity (either by wealth or degree) is negligible. These considerations allow a
deeper understanding of the interplay between topology and dynamics, which is not captured
by the wealth distribution alone.

8. Conclusions

We discussed how the empirically observed forms of wealth distributions can be reproduced by
a single stochastic model of wealth dynamics. The long-term shape of the distribution strongly
depends on the topology of the transaction networks among economic units. The purely log-
normal and power-law forms arise quite naturally if the network displays a homogeneous
density of links. In contrast, the frequently observed mixed shape appears to be related to
a heterogeneous link density, which we traced back to the presence of a core region in the
network. We have therefore concluded that the first-order topological properties alone (such
as the degree distribution) are not sufficient to specify the dynamical outcome of the process,
since higher-order correlations play a major role. In order to characterize these effects, we
have studied the impact of assortativity on the onset of nontrivial wealth distributions and
wealth correlations. Interestingly, the type of heterogeneity we have introduced appears to be
widespread in real networks, as a result of strong community structure [4], rich-club ordering
[30] or assortative mixing [28, 29]. Therefore, the effects considered here represent a prototype
for the dynamical processes that are expected to take place on real economic networks.
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[13] Bouchaud J P and Mézard M 2000 Physica A 282 536
[14] Souma W, Fujiwara Y and Aoyama H 2001 Preprint cond-mat/0108482
[15] Souma W, Fujiwara Y and Aoyama H 2003 Meeting the Challenge of Social Problems via Agent-based

Simulation ed T Terano (Tokyo: Springer) p 37
[16] Garlaschelli D and Loffredo M I 2004 Physica A 338 113
[17] Gibrat R 1931 Les inégalitś économiques (Paris: Sirey)
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